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Bubbles as payo�s at in�nity

Summary. We de�ne rational bubbles to be securities with payo�s occurring in the

in�nitely distant future and investigate the behavior of bubble values. We extend our

analysis to a setting of uncertainty. In an in�nite horizon arbitrage-free model of asset

prices, we interpret the money market account as the value of a particular bubble; a

similar interpretation holds for other assets related to the state-price de
ator and to

payo�s on bonds maturing in the distant future. We present three applications of this

characterization of bubbles.

1. Introduction

Formal analysis of rational speculative bubbles calls for models in which agents consume

at an in�nite number of dates. An immediate problem arises: if agents can trade without

restriction in sequential markets, they may enjoy unbounded utility by borrowing to

�nance current consumption, borrowing again to repay the initial loan, borrowing yet

again to repay the second loan, and so on. Such Ponzi schemes must be ruled out in

some way if we are to construct equilibrium models of bubbles. Two classes of bubble

models occur, depending on the strategy used to rule out Ponzi schemes.

One strategy is to impose a priori bounds on indebtedness (Santos and Woodford

[1992], Magill and Quinzii [1993]).1 For example, Magill and Quinzii assumed that agents

cannot choose consumption plans which imply a positive present value of asymptotic net

indebtedness. In such settings agents' choice sets are not linear spaces, implying that

security prices are not necessarily representable as the values of their payo�s under linear

functionals. Bubbles may then be de�ned as the excess of security values over the values

of their payo�s. In this strand of the literature it is shown that bubbles can occur on

any security that is retraded into the in�nite future, as long as that security is in zero

net supply. The requirement that the security be in zero net supply is needed because

otherwise existence of a bubble would increase aggregate wealth without providing any

1 Tirole (1982) is in the same spirit although, as Kocherlakota (1992) pointed out, Tirole nowhere

explicitly ruled out Ponzi schemes.
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new consumption opportunities. The resulting violation of Walras' law is inconsistent

with equilibrium. The arbitrage that, in a linear setting, would destroy the bubble|

buy the payo� generated by the security, short the security itself and never cover the

position|is ruled out because it results in a positive net present value of asymptotic

indebtedness.

Another modeling strategy, adopted by Gilles (1989) and Gilles and LeRoy (1992a,

1992b), maintains the convention of Arrow and Debreu that agents trade state-contingent

consumption claims|securities|at one date, which is interpreted as occurring before

time begins. The sequence of budget constraints of Santos{Woodford and Magill{Quinzii

is replaced by a single integrated budget constraint, thereby ruling out Ponzi schemes

at the outset. In the setting of Gilles and Gilles{LeRoy, choice sets are linear spaces,

thereby preserving linear pricing. An attractive feature of our approach is that with

linear pricing the connection to the central line of �nance theory, which has asset values

de�nitionally equal to the values of payo�s, is maintained.

In one speci�cation of this linear approach, the choice set consists of those payo�s

generated by a �nite number of securities trades, together with the limit points of nets of

such payo�s. This speci�cation is adopted with varying degrees of explicitness in formal

treatments of arbitrage (Clark [1993]) and discussions of the Arbitrage Pricing Theory

(Ross [1976]; Gilles and LeRoy [1991]). With security values de�nitionally equal to the

values of payo�s, the value of bubbles cannot usefully be de�ned as the di�erence between

the value of securities and the value of their payo�s. Instead, the fundamental value of

a security is de�ned as the limiting value of the initial segment of its payo�, and the

bubble value is whatever is left over (Gilles [1989], Gilles and LeRoy [1992a, 1992b]).

De�ning bubbles in this way creates the possibility of two types of bubbles, which

we call \price bubbles" and \payo� bubbles". We analyzed price bubbles in the papers

just cited; here we turn to the symmetric notion of payo� bubbles. The notion of payo�

bubbles must initially appear puzzling: do not bubbles necessarily involve security prices?

In our usage, the term \price" (or \price system") refers to a rule to assign values to

payo�s; linear pricing then means that this rule is a linear functional. Security \prices",

in contrast, are really values: they are the values taken on under the pricing rule by

the particular payo�s that de�ne securities. In speaking of bubble prices in a linear
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setting, economists ordinarily are referring to values, to payo�s evaluated by a price

system. Therefore bubble values can in principle originate with either the price system

or security payo�s.

The distinction between price bubbles and payo� bubbles can best be set out by an-

alyzing a special case. To understand price bubbles, assume that there is no uncertainty,

that time is continuous, and that all payo� streams are representable as continuous func-

tions on [0;1) that converge at in�nity. Under this restriction the value of payo� x

under an arbitrary linear functional p, p(x), is always representable as

p(x) = p � x :=

Z 1

t=0

p(t)x(t)dt+ p1x1 ;

where p(t) is integrable, p1 is a scalar and x1 is de�ned as limt!1 x(t). The fundamental

value of x under the price system p, fp(x), is de�ned as the limiting value of its initial

segments:

fp(x) :=

Z 1

t=0

p(t)x(t)dt;

so that the bubble value of x under p, bp(x) equals the value of x less the value of its

fundamental:

bp(x) := p(x)� fp(x) = p1x1:

A price bubble is identi�ed with strictly positive p1, while if p1 = 0 all payo�s have

values equal to their fundamental values.

To understand payo� bubbles, reverse the role of prices and payo�s here: the value of

a security x under a price system p, p(x), can be regarded as the value taken on by a price

system p|a continuous function p(t) converging at in�nity, with p1 := limt!1 p(t)|

under a linear functional x, rather than vice-versa as above. We are led to de�ne the

payo� space as the set of linear functionals x on the space of price systems p. By

symmetry, we have

p(x) = x � p =

Z 1

t=0

p(t)x(t)dt+ x1p1:

Here the interpretation is that x(t), an integrable function, is the fundamental payo�

and
R1
t=0 p(t)x(t)dt is the value of the fundamental payo�. The \payo� at in�nity", x1,

represents the bubble component of x; note that its value is determined by the long-run

average price, rather than the prices at any �nite set of dates.
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Essentially, a payo� bubble is the part of a payo� stream that occurs \at in�nity"|

i.e., after every �nite future date. Of course, in a �nite sample, looking at the realized

payo�s cannot directly reveal the presence of a bubble. But postulating that security

payo�s have bubble components may help explain 
uctuations in security values; for

example, some analysts have conjectured that the excess volatility of asset prices is in-

direct evidence of bubbles. Modeling bubbles as payo�s at in�nity provides a rigorous

device for evaluating the frequently-encountered argument that existence of valued bub-

bles violates a transversality condition for investors' optima|or, alternatively, allows a

utility-increasing arbitrage. An explicit mathematical structure for bubbles provides the

foundation for their empirical analysis by explaining clearly when theoretical arguments

can and cannot be used to demonstrate their nonexistence.

From a formal point of view, then, bubbles can be modeled either as payo� bubbles or

price bubbles.2 From a substantive point of view, some economic problems are clari�ed by

one speci�cation, some by the other. Our concern in this paper is with payo� bubbles. In

order to motivate our contention that the notion of payo� bubbles can clarify substantive

economic problems, we turn to an example. We keep the treatment informal here, pending

more rigorous discussion in Section 3 below.

Consider a �rm which, at a given date, has a given amount of capital which earns a

constant rate of return. If this �rm pays most of its earnings out in dividends, dividends

are initially high, but grow slowly over time. If, on the other hand, the �rm retains and

reinvests most of its earnings, the initial dividends are low, but they grow fast. In the

absence of taxes and frictions and assuming that dividends are capitalized at the same

rate as that which the �rm earns on capital, the Modigliani{Miller proposition implies

that the present values of all the dividend streams generated by di�erent payout rates

are equal.

But suppose that the dividend payout rate converges toward zero. The limiting

dividend at any date is zero, and the present value of a sequence of zeros is, of course,

zero. Apparently the Modigliani{Miller theorem is violated as dividends approach zero.

By selling a zero-dividend �rm for its market value at some future date, of course, a trader

2 Although a model in which price bubbles and payo� bubbles coexist might be useful, we have not
found a manageable mathematical structure in which this would be the case.



{ 5 {

can generate a revenue that equals the present value of the dividend streams implied by

positive dividend payout rates. But this creates a new problem: it is a commonplace in

�nance that the future sale of an asset for its market value should not a�ect the asset's

present value, which is precisely what appears to happen here.

This puzzle may not be important, but it poses the kind of problem for which eco-

nomic theory should have a convincing answer. The theory of rational speculative bubbles

as developed in this paper provides such an answer. The dividend streams generated by

successively lower dividend payo� rates converge, in the relevant topology, not to zero

but to a payo� at in�nity|in other words, to a bubble. The present value of this bubble

equals the present value of any of the dividend streams generated by a positive dividend

payout rate. The dividend streams do converge to zero in some topologies, to be sure; the

example proves only the inconsequential fact that in such topologies the present-value

operator is discontinuous.

2. Securities as charges

Bubble payo�s, then, are payo�s at in�nity, while fundamental payo�s are payo�s at �nite

dates. The example of the zero-dividend �rm shows that it would be desirable for bubbles

to be the limits of sequences (or nets) of fundamental securities. This is not obviously

the case with the duality that we used to introduce the notion of bubble payo�s, namely

that between the space of converging functions and the space of summable functions, so

it is desirable to turn to a richer setting.

In earlier work focusing on price bubbles (Gilles [1989], Gilles{LeRoy [1992a, 1992b]),

we took as securities the elements of L1(M;M; �), where (M;M; �) is a measure space.

This linear space is the set of functionals on the index set M that are measurable with

respect to M and bounded (except perhaps on a set of �-measure zero). Price systems

were the norm-continuous linear functionals on the security space. This space, which

is denoted ba(M;M; �), is known to be identi�able with the space of bounded charges

on M that vanish on sets of �-measure zero, where a charge is a �nitely additive set

function. If the charge is not only �nitely but also countably additive, it is a measure.
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With price system p 2 ba, the value of security x 2 L1 is

p(x) =

Z
M

x dp : (1)

In order to focus on payo� bubbles, we reverse the role played by L1 and now

interpret it as the price space. L1(M;M; �) is the dual of L1(M;M; �), the space of �-

integrable real-valued functions onM , which we now specify as the space of fundamental

payo�s. This reversal of the payo� and price spaces was illustrated in the simple setting

discussed in the introduction above. With price p 2 L1, the value of the fundamental

payo� x 2 L1 is

p(x) =

Z
M

x p d� : (2)

A symmetry between (1) and (2) becomes evident when we rewrite the latter as

p(x) = p(�) =

Z
M

p d� ; (3)

where � is a measure on M de�ned by

�(A) :=

Z
A

x d�; for all A 2 M: (4)

In view of (4), each fundamental payo� x 2 L1 determines a unique measure � 2 ba;

conversely, each measure � 2 ba determines a unique function x 2 L1 satisfying (4) (x

is the Radon{Nikodym derivative of � with respect to �). Thus, L1 is embedded into ba

as its subset of measures; x and � being indistinguishable, we write indi�erently p(x) or

p(�), as in (3). Note that for any p 2 L1, p(�) is well de�ned by the right side of (3) for

any � in ba and not just for its subset of measures; but if � is not a measure, it has no

Radon{Nikodym derivative x, and therefore the representation of the value in (2) is not

available.

Charges are partially ordered by setwise comparisons; i.e., � � � means �(A) � �(A)

for all A 2 M. A positive charge � (i.e., � � 0) is called pure if � = 0 is the only positive

measure not exceeding � (i.e., satisfying � � �). By the Jordan decomposition theorem,

any charge in ba can be expressed as the di�erence between two positive charges. An

arbitrary charge is called pure if it equals the di�erence between two positive pure charges.

By the Yosida{Hewitt theorem, any charge � can be uniquely expressed as the sum of a
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measure � and a pure charge �; hence, the elements of ba that are not measures (not

fundamental securities) contain pure charges.

The payo� space ba(M;M; �) contains pure charges if and only if the subset of M

that supports � is in�nite, but pure charges do not necessarily admit an interpretation

as payo�s in the in�nite future. Indeed, when the set M does not index time, the notion

of a payo� in the in�nite future is not even available. Suppose for example that M

is an in�nite index set for the states of the world in a static model with uncertainty;

then a pure charge corresponds to a payo� in a state occurring with arbitrarily small

probability which has nonzero expected value. Even if M indexes time, a bubble payo�

may not necessarily be paid in the in�nitely distant future. Suppose for example that

M = f0; 1=2; 3=4; : : : ; n=(n+1); : : :g; then the horizon is �nite and all payo�s, including

\payo�s at in�nity" are paid within one year. In continuous time models, in particular,

there exist bubbles that are paid within a �xed time interval.

One way to guarantee that all pure charges are payo�s at in�nity is to let M be a

countable set indexing time, the type of commodity, and the state of the world, with a

�nite number of commodity types and a �nite number of states at each of a countably

in�nite number of dates. To see this, note that a pure charge on M associates zero

weight with any �nite subset, which means that a bubble pays no dividend at any �nite

time. In other words, all payo�s occur \at in�nity" (but note that, contrary to this loose

description, there are many distinct securities that pay at in�nity).

We recognize that our characterization of securities as elements of a charge space is

unconventional. There is precedent for speci�cation of securities as measures, for example

in the commodity di�erentiation literature (Mas-Colell [1975]), and in any case measures

are equivalent to integrable functions (precisely the result that yields the embedding of

L1 in ba), which is a conventional speci�cation. The novel element here is our speci�-

cation that securities may be modeled as set functions that are not countably additive.

But nothing about the nature of securities implies countable additivity|for example,

nothing about a share of stock requires us to assume that its value equals the limiting

value of the initial segments of the dividend stream it generates. Assuming that, on the

contrary, the two are always equal would imply that the value of the stock fundamental

necessarily equals the value of the stock itself under any price system. Rather than rule
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out bubbles without bene�t of economic reasoning in this way, we prefer to leave room

for the existence of bubbles by allowing securities which are pure charges, and then let

economic considerations determine whether these are valued.

The assumption that the fundamental component of a security payo� is integrable (or

summable, to take its `1 representation)3 implies that securities like �M are inadmissible.4

This is so because the dividend stream �M would have in�nite value under the price

system �M which, as an element of L1, is admissible. However, we can allow constant

and even increasing dividend streams as payo�s by the simple device of rede�ning the

norm, as we now demonstrate.

By de�ning the norm of a function x to be

kxk1� :=

Z 1

t=0

jx(t)je�(��1)tdt

for some constant � rather than, as in L1,
R1
t=0 jx(t)jdt, we can admit securities with

growing payo�s, as long as the growth rate is below �. De�ne L1
� to be the space of

functions x such that kxk1� is �nite; in other words, x 2 L1
� if bx 2 L1, where bx(t) :=

x(t)e�(��1)t. Choosing L1
� with � > 1 as the space of fundamental securities allows us to

include �M as a security, but at a cost: when the security space expands, the price space

must contract. The space of admissible price systems, denoted L1� , becomes the set of

functions p such that

kpk1� := sup
t
jp(t)je(��1)t

is �nite; in other words, p 2 L1� if bp 2 L1, where bp(t) := p(t)e(��1)t. In economic

terms, accommodating securities with payo�s that rise over time requires adopting price

systems that imply su�cient discounting, so that all securities remain �nite-valued. The

relations among L1
�, L

1
� and ba� are exactly the same as those among L1, L1 and ba.5

3 With M countable, we tacitly assume that M is the set of all subsets of M and � the counting

measure. In this case, L1, the space of absolutely integrable functions, becomes `1, the space of absolutely

summable sequences, and L1 becomes `1, the space of bounded sequences.

4 Here �A is the indicator function of A � M , which takes on value 1 on A and 0 elsewhere; thus,

�M takes on unit value everywhere.

5 The relation between ba and ba� is easily characterized: for each � 2 ba�, there corresponds a
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Speci�cation of the security space as the space of charges on an in�nite index set

implies that there always exist securities which are bubbles or which have bubble com-

ponents. Whether or not these securities exist in positive net supply depends on the

speci�cation of production sets and endowments, and whether or not these bubbles are

valued depends on the equilibrium price system. For example, with ba1 as the security

space (i.e., � = 1), any pure charge is a free good (and therefore economically inconse-

quential) under the price system e�(��1)t, � > 1; but under the price system �M any

nonzero positive pure charge has positive value. Correspondingly, whether valued bub-

bles exist under any �xed price system depends on whether the security space is de�ned

to be as large as possible consistent with that price system. For example, under the price

system e�2t, if the security space is ba� with � < 3, then there are no valued bubbles.

On the other hand, with the same price system there exist valued bubbles in ba3.

It follows that whether such models as Lucas (1978) or Mehra and Prescott (1985)

contain valued bubbles is a purely formal question, depending solely on how the model

builder chooses to specify the security space. On the other hand, whether a particu-

lar security such as the market portfolio contains a bubble component is very much a

substantive question.

Because bubbles have zero payo�s at any single date, they are di�cult to characterize

formally. We get around this problem by characterizing bubbles as the limit points of

nets of fundamental securities, since fundamentals are easy to characterize. Aside from

mathematical convenience, this treatment stems from the root of our interest in bubbles

(apparent in the motivating example of the zero-dividend �rm): we want to know what

happens to fundamental securities and their values as the payo� becomes increasingly

distant or spread out over time. To illustrate the convergence of fundamental securities to

bubbles, consider the sequence f�i; i = 1 : : :1g, which is a sequence of discount bonds.

As shown in the appendix, this sequence admits a bubble as a limit point, not in the

norm topology, but in the weak? topology of ba.

unique b� 2 ba, with the correspondence determined by

Z
p d� =

Z
bp db� ; for all p 2 L1� ; bp 2 L1 such that bp(t) = p(t)e(��1)t:
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3. An application: \Zero"{dividend �rms.

We now return to the problem of the zero-dividend �rm introduced in Section 1 above.

Consider the valuation of a �rm initially consisting of one unit of capital which generates

earnings at constant rate � � 1. The gross interest rate is also constant and equal to

�, implying that the price system is e��t. This �rm pays dividends at constant rate 


(expressed as a proportion of current earnings), and with its retained earnings it acquires

new capital which has constant internal rate of return �.

This �rm's dividend is �
 at t = 0, and dividends grow exponentially at rate �(1�
),

implying that the dividend stream is:

x
(t) = �
e�(1�
)t;

where x
(t) is the dividend at date t generated by a �rm with payout rate 
. To accom-

modate such a dividend stream for any 
 in (0; 1), let the space of fundamental payo�s

be L1
�. For 
 > 0 the Miller{Modigliani proposition that the initial value of the �rm is

independent of 
 is easily veri�ed:

p(x
) =

Z 1

t=0

e��tx
(t)dt = 1:

Now let 
 approach zero. For any positive 
 the above proposition implies that the value

of the �rm is 1, yet x
 converges (pointwise) to a zero dividend stream, which has zero

value.

This apparent discontinuity in the value of the �rm as 
 approaches zero stems from

the assumption that the dividend stream converges to zero. Clearly it does so in the

topology of pointwise convergence, but the discontinuity of the valuation functional that

the example implies should lead us to question the appropriateness of that choice of

topology, not to conclude that some kind of deep paradox has been unearthed.

Suppose that we choose instead the topology induced by the norm

kxk1� =

Z 1

t=0

jx(t)je��tdt: (5)

This norm, already de�ned in Section 2, has the convenient property that the norm

of a (positive) dividend stream coincides with its value, immediately guaranteeing the
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continuity of the price functional (this is saying no more than p 2 L1� , which is obvious).

Under the norm (5), the net fx
g does not converge to the zero vector, since kx
�0k = 1

for all 
. The situation is similar to that of the sequence of discount bonds discussed in

the appendix: that sequence does not have any limit points in the norm topology of L1,

and neither does the net fx
g in the norm topology of L1
�.

The norm dual of L1
� is L

1
� . The value of y 2 L1

� under the price system q 2 L1� is

q � y :=
R
p(t)y(t) dt. The space L1

� can therefore be endowed with the weak topology,

under which a net fy�g converges to y if fp � y�g converges to p � y for all p 2 L1� . As

in the case of the discount bonds, again, the net fx
g has no limit point in the weak

topology of L1
�.

It comes as no surprise that our solution is to enlarge the space of dividend streams

from the L1
� space of sequences normed by (5) to the associated charge space ba�, and to

consider convergence in the weak? topology (if this is done the fundamentals x
 appear

as the measures �
, with the correspondence de�ned in (4)).
6 Because the elements of the

net f�
g are bounded in norm, the net must have a weak? limit point �0, by Alaoglu's

theorem (which is stated in the appendix).

It is easy to see that �0 must be a pure charge. For any charge � ,
R
�td� is the

t-th component of the fundamental of � . Since x
(t) =
R
�t d�
 converges to zero, a

limit that must equal
R
�t d�0 (by de�nition of weak? convergence, tested with the price

system �t), it must be the case that �0 has a zero fundamental.

The net fx
g, then, admits as limit points, not zero, but rational bubbles. That a

net of fundamental securities can converge to a bubble proves only the inconsequential

fact that the projection operator mapping each security onto its fundamental is discon-

tinuous in the weak? topology; equivalently, it re
ects the fact that the linear subspace

of measures is not weak? closed in ba.

In a precise sense, by setting 
 = 0 the �rm pays in�nite dividends in the in�nite

future. Because the current value of this bubble is unity rather than zero, the apparent

anomalies attending \zero"-dividend �rms disappear.

6 In the weak? topology of ba�, a net of charges f��g converges to � if p � �� converges to p � � for all

p 2 L1� . As a result, when restricted to measures, this topology is identical to the weak topology of L1
�.
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4. Uncertainty

The foregoing characterization of bubbles extends directly to a setting of uncertainty.

We adopt the uncertainty model described in Du�e (1992), to which we refer the reader

for the terms we leave unde�ned. We �x a probability space (
; F;M) and the standard

�ltration fFt : t � 0g generated by a standard Brownian motionW (t) in <d. An adapted

process is a function f : 
 � [0;1) such that f(t) := f(�; t) is measurable with respect

to Ft for all t. Suppose that the payo� stream of security x is characterized by its gain

gx(t), where gx(t) is an adapted process that equals the cumulative payo� from date 0

to date t. Doing this allows us to handle simultaneously the case of a continuous and

atomless payo� stream, in which case gx(t) is di�erentiable (on each sample path) and

also the case of a single lump-sum payo� (or, in an obvious extension, a �nite number of

lump-sum payo�s), in which case gx(t) has discontinuities. We will restrict our attention

to payo� streams that satisfy
R1
0 dg2x(t) <1, almost surely.

In the absence of arbitrage, there exists a positive-valued adapted process m, with

m(0) = 1, such that the value of x at t, V (t; x), is given by

V (t; x)

m(t)
= EMt

�Z 1

�=t

1

m(�)
dgx(�)

�
: (6)

Here EMt denotes expectation taken with respect to the natural or physical probability

measure M restricted to the �-�eld Ft. If markets are complete m is unique. If markets

are incomplete, there exist many processes m satisfying (6); for example, the stochastic

process for the marginal utility of any expected-utility-maximizing agent (whose optimum

is interior) can serve as 1=m in (6).

The process m is called the state-price de
ator.7 Eq. (6) implies that for any pay-

o� stream x satisfying dgx(t) = 0 for t < T , the discounted value V (t; x)=m(t) is a

martingale under M until time T .

7 The literature does not adopt a standard terminology here: Du�e (1992) also used the term

\state-price de
ator", but entered the term corresponding to our m(�) in the numerator rather than

the denominator, suggesting that m should be called a factor rather than a de
ator. Many authors

use the term \pricing kernel", with various related meanings. For example, Hansen and Jagannathan

(1991) characterized the pricing kernel as the representative agent's marginal rate of substitution for

consumption at successive dates, a usage that has no analogue in continuous-time settings.
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We saw in Sec. (2) that in the deterministic case payo� bubbles were de�ned by using

the equilibrium price system to de�ne a norm on the payo� space, and then characterizing

bubbles as limit points of fundamental payo�s. Exactly the same strategy is employed

here. De�ne the norm of payo� x by

kxk1m :=

Z 1

�=0

kdgx(�)k2

km(�)k2
: (7)

Here kzk2 denotes the Hilbert space norm
p
E(z2).

De�ne the space of fundamental payo�s as the set of payo�s with �nite norm, as

de�ned by (7). A continuous linear functional P on the L1 space of fundamental payo�s

is representable by a member p of the L1 space of bounded adapted L2-valued functions

on [0;1), where P (x) =
R1
0 EM0 [p(t) dgx(t)]. On this dual space, the norm is de�ned by

kpk1m := ess sup�kp(�)k2 km(�)k2:

Because 1=m is a convex function of m, this norm and Jensen's inequality imply that

k1=mk1m � 1;

with equality if and only if m(t) is a deterministic process. There is no guarantee that

k1=mk1m is �nite, however. If it is in�nite, there exist fundamental payo�s to which

1=m assigns in�nite value. With such a payo� x, the variance of the payo� at t exists

almost everywhere (since kdgx(t)k2 is well-de�ned), but it rises too fast (or does not fall

fast enough), a problem which does not arise in the absence of uncertainty. We call an

adapted process p(t) an admissible price system if it is positive and kpk1m < 1 and we

assume that 1=m is an admissible price system so as to guarantee that all �nite-norm

payo�s have �nite value.

The state-price de
ator m(t) can be interpreted as the value of a fundamental payo�.

To see this, consider the value at t of �� , a claim to a single payment equal to m(�) at

the �xed future date � . In this case the gain process g�� is a single jump equal to m(�)

at time � , so (6) reduces to V (t; �� )=m(t) = EMt (1) = 1 (trivially, a martingale), and

therefore V (t; �� ) = m(t), for any t < � and any � > 0. Note that, since k��k
1
m =

km(�)k2=km(�)k2 = 1 for any � , �� is an admissible fundamental payo�. In fact the
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payo� norm was designed to ensure that all of these payo�s have unit norm (which

implies, as we will see below, that they admit a bubble as a limit point).

As it happens, there is nothing special about portfoliom(t) that allows it alone to be

used as a de
ator: any positive-valued portfolio satisfying the numeraire choice m(0) = 1

would do, although the probability measure with respect to which the expectation is taken

depends on which security or portfolio serves as a de
ator. To illustrate this statement,

we will consider pure discount default-free bonds. Let �� denote a deterministic payo�

of one unit of consumption at date � , so that the gain process g�� (t) is a unit step at

t = � . According to equation (6), the value V (t; �� ), for t < � , is given by

V (t; �� )

m(t)
= EMt

�
1

m(�)

�
: (8)

The yield to maturity on this bond is given by

r(t; �) := �
log(V (t; �� ))

(� � t)
;

and the short rate r(t) is de�ned by

r(t) := lim
�!t

r(t; �):

Now de�ne themoney market account b(t), which keeps track of the value at t of investing

at the short rate, by

b(t) := exp

�Z t

0

r(s)ds

�
: (9)

Since b(0) = 1 and b(t) > 0, we can use b(t) as a de
ator. Absence of arbitrage

implies and is implied by the existence of a probability measure B, equivalent to M in

the sense that they both assign measure zero to the same sets, such that the value of any

fundamental payo� x, V (t; x), satis�es

V (t; x)

b(t)
= EBt

�Z 1

�=t

1

b(�)
dgx(�)

�
: (10)

As before, b(t) can be interpreted as the value at t of a fundamental payo�, because

b(t) = V (t; �� ), where �� is a claim to a single payment of b(�) at the �xed date � ,

for any � > t. The validity of this statement follows easily from (10). The probability
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measure B is known as the risk-neutral probability measure, since it gives the value of

any security as the discounted value of its payo� de
ated by the interest rate, as would

be the case under the natural probabilities M if agents were risk neutral (in a sense to

be discussed below).

Another de
ator is provided by the value at t of the fundamental payo� �� , de�ned

as a default-free discount bond that matures at � , and has payo� then of 1=V (0; �� ).

From (8) this price is given by

p(t; �) := V (t; �� ) =
V (t; �� )

V (0; �� )
= m(t)

EMt [1=m(�)]

V (0; �� )
: (11)

The scale of the payment at maturity was chosen to ensure that, for any � , p(0; �) = 1.

Because p(t; �) > 0 for all t < � , it can be used as a de
ator (until time �). De�ne

the probability measure associated with this � -year bond de
ator p(t; �) as P(�), as is

appropriate since each � results in a di�erent probability measure. Then the value of any

payo� x which does not extend beyond � obeys

V (t; x)

p(t; �)
= E

P(�)
t

�Z �

s=t

1

p(s; �)
dgx(s)

�
; for t � �:

The various probability measures are equal whenever the de
ators are equal, which

occurs under several simplifying assumptions. If interest rates are deterministic, then

B = P(T ) for all T , since then the de
ators are equal as well. Similarly, M = P(T )|

and m(t) = p(t; T )|if the representative agent is risk neutral at horizon T . This will

occur, for example, if agents maximize the expected value of consumption at date T ,

which will result in risk-neutral pricing for all payo�s at date T , but generally not for

payo�s at other dates, except under strong restrictions on preferences or production

technologies.

To investigate the interpretation ofM = B, assume that 1=m(t) follows the di�usion

process

d(1=m(t))

1=m(t)
= 
m(t)dt+ �m(t) � dW (t); (12)

where W (t) is the standard Wiener process in <d that describes the evolution of fun-

damental sources of uncertainty (and that generates the �ltration fFt; t � 0g), and
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�m(t) � dW (t) equals
P

i �mi(t) dWi(t). Similarly, let V (t; x), the value of some payo�

stream x, follow the di�usion:

dV (t; x)

V (t; x)
= 
x(t)dt+ �x(t) � dW (t):

By Ito's lemma, the drift of V (t; x)=m(t) is given by 
x(t) + 
m(t) + �x(t) � �m(t).

If gx(t) = 0 for t < T , then V (t; x)=m(t) is a martingale until time T under the natural

probability measure M, so that this drift must equal zero, implying that


x(t) = �
m(t)� �x(t) � �m(t): (13)

Now let x = �T , the money-market account interpreted as a claim to a single payo�

equal to b(T ) payable at time T . As noted earlier, V (t; �T ) = b(t), which from equation

(9) and Ito's lemma follows the process

db(t)

b(t)
= r(t)dt:

In other words, the money market account has drift 
b(t) = r(t) and is predictable

(�b(t) = 0). Substituting these values for 
x and �x in (13), we conclude:


m(t) = �r(t): (14)

Substituting (14) in (13), the latter becomes


x(t)� r(t) = �x(t) � (��m(t)); (15)

which is recognized as the security market line of the consumption CAPM. Because of

this CAPM relation, we refer to ��m(t) as the market price (strictly, prices) of risk.

Now consider the stochastic process b(t)=m(t) = V (t; �T )=m(t), which, as noted in

the discussion of eq. (6), is a martingale under M until time T , for arbitrary T . Since

b(t) is predictable (has zero instantaneous variance), Ito's lemma implies that b(t)=m(t)

has volatility (b(t)=m(t))�m(t) under M, so b(t) = m(t) if and only if �m(t) = 0 for all

t. The condition that the market price of risk equals zero|equivalently, that the state-

price de
ator is predictable|is often identi�ed with \risk-neutral pricing".8 Despite

8 Equation (15) proves the well-known fact that the local expectations hypothesis, as de�ned by Cox,
Ingersoll and Ross (1981), is valid if and only if the market price of risk is zero, or, as we now see, if and
only if the state-price de
ator is predictable.
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this characterization, it should be noted that under the restriction �m(t) = 0 actuarial

pricing occurs only for payo�s with an in�nitely short horizon. As just seen, we can

equally well identify risk-neutral pricing with a T -year horizon instead of an instantaneous

horizon, implying M = P(T ) instead of M = B. Risk neutral pricing at all horizons

simultaneously (i.e., M = B = P(T ) for all T ) obtains if and only if interest rates are

deterministic (so B = P(T ) for all T ) and the state-price de
ator m(t) is predictable (so

M = B).

5. Stochastic bubbles

Now we are in a position to characterize bubbles in stochastic environments. We have

de�ned an L1 space of payo�s: those stochastic processes with �nite norms, as de�ned

by (7). Now we embed this space in the corresponding charge space ba
m
. Then, just as

in the deterministic case, the fundamental payo� associated with any positive payo� x

is the largest fundamental which is less than or equal to x, the bubble component being

whatever is left over. A pure bubble is a payo� with a zero fundamental.

To de�ne our �rst stochastic bubble, consider the payo� �� de�ned earlier as a claim

on a single payment equal to m(�) at date � . Recall that the value of this payo� satis�es

V (t; �� ) = m(t), for all t � � . The set f�(�); � � 0g constitutes a net, each element

of which has unit norm. Therefore Alaoglu's theorem implies the existence of a charge

� such that f�(�)g converges to � along some subnet. Call this charge the state price

de
ator bubble. Now, �� admits � as a limit point, V (t; x) is continuous in x, and

V (t; �� ) = m(t) for all � ; therefore V (t; �) = m(t) as well.

We thus have a generalization of the concept of a state-price de
ator that works for

payo�s with any �nite horizon, or with an in�nite horizon: the state-price de
ator at

any date is the value at that date of a self-�nancing portfolio the payo� of which is the

state-price de
ator bubble � in the in�nite future.

The money-market account bubble can be de�ned in exactly the same way: consider

the security �� which is a claim on b(�) at � and nothing else. By Alaoglu's theorem, to

show that the net f�� ; � � 0g admits a nontrivial bubble � as a limit point, it su�ces

that the net be bounded in norm. To prove the claim that k��k
1
m � k��k

1
m = 1, consider
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the stochastic process for m(t) which is implied by that for 1=m(t) given in (12) (recall

that 
m(t) = �r(t)):

dm(t)

m(t)
= (r(t) + �m(t) � �m(t))dt� �m(t) � dW (t):

The process for b(t) has thus lower drift, namely r(t), and lower variance, namely

zero, than the process for m(t). Given that m(0) = b(0) = 1, we conclude that

kb(t)k2 � km(t)k2, for any t. Since k��k
1
m = kb(�)k2=km(�)k2, the claim is proved.

We thus have shown the existence of the money market account bubble �, and any se-

curity can be valued as the expected value of its payo� discounted by the value of the

money-market account, where the expectation is taken with respect to the risk-neutral

probability measure B.

Finally, we can de�ne �(�) as the payo� consisting of p(�; �) = 1=V (0; �� ) at date

� , and nothing at any other date. Again, the net f�(�)g is bounded in norm, since

k��k
1
m =

1

V (0; �� )km(�)k2
�

1

EM0 [1=m(�)]EM0 [m(�)]
� 1 ;

where the �rst inequality follows from km(�)k2 =

q
EM0 [m(�)2] � EM0 [m(�)] and

V (0; �� ) = EM0 [1=m(�)], while the second is Jensen's inequality (the terms are all equal

if and only if m(�) is deterministic). Therefore, the net f�(�)g admits a weak* limit �,

which limit we call the very long discount (VLD) bubble (the term comes from Kazemi

[1992]). Now, by de�nition p(t; �) = V (t; �� ); since � is a limit point of the net f�(�)g

and V (t; �) is continuous, p(t; �) has a corresponding limit point, say p(t) = p(t;1),

which is the value at time t of the bubble �. Since p(t) is positive, it is a valid de
ator,

and there exists an equivalent martingale measure, say P(1), such that the value of any

payo� x satis�es
V (t; x)

p(t)
= E

P(1)
t

�Z 1

�=t

1

p(�)
dgx(�)

�
:

Now, as promised, we derive some conditions for equality among the various bubbles

we have de�ned. First, we have that � = � if and only if the state price de
ator is

predictable. To see that the condition is necessary, recall that if the bubbles � and �

are equal, so must be their values at date t, b(t) and m(t), for any t. We showed above

that this equality occurs if and only if m(t) is predictable. Su�ciency is obvious, since
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�m(t) = 0 implies that b(t) = m(t), but because � and � are just the respective limit

points of �(�) and �(�) (which are claims on b(�) and m(�) payable at time �), these

must be equal also (assuming the same subnet is used in each case).

Turn now to conditions for � = �. This equality holds if and only if predictions

about 1=b(�), for large � , are not updated in light of current information under the

equivalent martingale measure B. Deterministic interest rates imply this condition, but

the nonrandomness assumption is stronger than needed. To understand the absence of

updating condition, note that if we specialize (10) twice (�rst to x = �� and then to

t = 0), there results

V (t; �� )

b(t)
= EBt [1=b(�)] (16)

and

V (0; �� ) = EB0 [1=b(�)] : (17)

Dividing (16) by (17), there results

V (t; �(�)) =
V (t; �� )

V (0; �� )
= b(t)

EBt [1=b(�)]

EB0 [1=b(�)]
: (18)

Now let � become large. V (t; �(�)) converges to the value at t of �, and b(t) is the value at

t of �, so if � = � these values approach equality, implying that the ratio of expectations

in (18) approaches unity. Conversely, if the ratio of expectations approaches unity, then

as � gets large, V (t; �� ) approaches b(t), which is the payo� at time t on �t. Therefore,

for any subnet of f��g converging to �, there exists a subnet of f��g converging to � as

well. In other words, by considering appropriate subnets, we have � = �.

We have � = � under analogous conditions, except that the absence of updating

applies to the pricing kernel 1=m(t) under M rather than to 1=b(t) under B, since (11)

replaces (18). Speci�cally, we have

V (t; �(�)) = m(t)
EMt [1=m(�)]

EM0 [1=m(�)]
:

The condition for absence of updating for � = � is similar to that for � = � but

not identical. In the latter case the condition is satis�ed if b(t) = f(t)�(t), where f(t) is

deterministic and �(t) is predictable, stationary and ergodic under B. In the former case
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the condition is satis�ed if m(t) = f(t)�(t), where again f(t) is deterministic and �(t)

is stationary and ergodic under M, but now �(t) need not be predictable since � is not

generally predictable.

6. Applications

In earlier sections we argued that bubbles play a role whenever in�nite-horizon models

are used (and, we will see in subsection (6.3), not only then). Making the role of bubbles

explicit can clarify otherwise puzzling results. For example, we suggested that by regard-

ing �rms which retain all their earnings as paying out an in�nite dividend in the in�nite

future, rather than as not paying a dividend, the apparent discontinuity of �rm value as

a function of the dividend payout rate is avoided, and the Miller-Modigliani theorem is

extended to �rms that retain all their earnings.

In this section we indicate some other areas of application of the theory of bubbles.

In the interest of brevity the arguments are sketched rather than stated formally.

6.1. Measuring the state-price de
ator Kazemi (1992) proposed using the value of a

VLD bond as a proxy for the state-price de
ator, on the grounds that 
uctuations in

the value of bonds with payouts in the very distant future are dominated by 
uctuations

in the current marginal utility of consumption. In our terms Kazemi assumed that the

VLD bubble � equals the state-price de
ator bubble �, so that the value of the VLD

bubble equals the reciprocal of the current marginal utility of consumption of any agent

who consumes at an interior point. Necessary and su�cient conditions for the validity

of this use of � as a proxy for � were stated in Section 4 above.

In a footnote Kazemi suggested that current values of even stochastic payouts can be

used as proxies for �, as long as the payout occurs in the distant future. The results of this

paper show that Kazemi is incorrect here: it is precisely the argument of this paper that

di�erent bubbles have di�erent current values, and most bubbles will have values that

di�er from the reciprocal of the marginal utility of consumption. To see this, consider a

�rm which retains all its earnings and is subject to �rm-speci�c productivity shocks and

shocks to prices of substitute goods, for example. This �rm can be considered to have a

dividend payout consisting of a bubble, but its current value will be determined by the
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current realization of the productivity shocks and the shocks to prices of substitutes as

well as consumers' marginal utility of consumption.

6.2. \Long interest rates can never fall" Dybvig, Ingersoll and Ross (1995) proved

that long-term interest rates can never fall. To understand the intuitive content of their

result, consider a discrete-time uncertainty tree with one state at date 0 and two states

at dates 1, 2, : : : , so that all uncertainty is resolved at date 1. Suppose that state-claim

prices equal 1 at date 0 and at each node on the upper branch of the uncertainty tree.

State-claim prices on the lower branch equal 2�t at date t, for t = 1, 2, : : : . Thus in date

1 the gross one-period interest rate is revealed to be 1 on the upper branch and 2 on the

lower branch; after date 1 these interest rates never change .

Clearly, the yield to maturity on a t-period pure discount bond issued at date 0 equals

(1 + 2�t)1=t; this value converges to 1 when t converges to in�nity, so call this limit the

yield to maturity on a VLD bond issued at date 0. Then on date 1 the interest rate on a

new VLD bond is either 1, as on date 0, or 2. Thus interest rates may rise; they cannot

fall. Essentially, this occurs because the date{0 cost of buying one unit of consumption

at date t is, for high t, dominated by the lowest of the possible interest rate realizations.

When the rate of interest is 1, the original VLD bond has value 1 and yield to

maturity 1 (so there is no need to issue a new VLD bond to get this result), but when

the rate of interest rises to 2, the original VLD bond issued at date 0 becomes worthless

(the payo�s on the sequence of discount bonds used to de�ne the bubble do not increase

fast enough) and therefore its own yield to maturity is not well de�ned. Observe that

1 is the correct price at date 0 for an asset that will be worth 1 in the low interest rate

state and 0 in the other state.

To recast Dybvig, Ingersoll and Ross's result in the language of this paper, observe

that the duration of the VLD bubble is in�nite. Thus an increase in prevailing long-term

interest rates corresponds to a decrease in the value of a VLD bubble to zero. Similarly,

a decrease in prevailing long-term interest rates would correspond to an in�nite increase

in value; the fact that an in�nite increase in value cannot occur implies the impossibility

of a decrease in yields.

As the example indicates, the yield to maturity on a VLD bubble can never change:

the fact that the duration of a VLD bubble is in�nite implies that its yield to maturity
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stays the same over time, or the security becomes worthless, in which case its yield to

maturity is unde�ned.

6.3. Doubling Strategies Up to now we have interpreted the index set as representing

time. However, the same mathematical structure applies when the index set refers to

alternative possible events, and the application of the theory of bubbles in this context

produces useful insights.

Consider a gambling strategy consisting of betting 1 at even odds, and then doubling

the bet after each loss. The game ends with the �rst win. A naive interpretation of this

game is that it yields a payo� of 1 with probability 1, and therefore is an arbitrage. A more

sophisticated argument would reject the implication that a potentially in�nite sequence

of fair-game bets can possibly produce an arbitrage. This argument is made formal by

observing that the sequence of payo�s to the truncated games does not converge, implying

that the payo� to the game as a whole is not well de�ned. To see this, observe that the

cumulated payo� for the game truncated after t stages consists of 1 with probability

1� 2�t and �(2t � 1) with probability 2�t. This payo� converges pointwise to 1 except

on a set of probability measure zero. However, just as with the zero-dividend �rm,

pointwise convergence is not the relevant criterion. In the L2 norm the payo� to the

doubling strategy is not well de�ned since the payo� variance becomes in�nite: thus the

doubling strategy is inadmissible.

A di�erent analysis emerges if one imposes the L1 norm on payo�s rather than the

L2 norm. It remains true that the sequence of payo�s to the truncated games diverges

in the L1 norm. However, under the L1 norm, the norm of the payo� of the truncated

doubling strategy is bounded above by 2. Therefore, reinterpreting the space of payo�s as

ba rather than L1, Alaoglu's theorem guarantees that a subnet of the sequence of payo�s

to the truncated games converges. The limiting payo� is 1 on a set of measure 1, and a

(negative) bubble on a set of measure zero. Despite occurring on a set of measure zero,

the bubble contributes exactly -1 to the expectation of the game, which is therefore zero

even in in�nite time. Thus if bubbles are admitted the payo� on the in�nitely repeated

game is well de�ned.

As the foregoing examples suggest, admitting bubbles expands economists' ability to
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analyze settings in which an in�nite number of security trades take place.9

7. Conclusion

Economics and �nance are replete with examples of securities which have values greater

than those of their payo�s in the �nite future. These securities are sometimes labeled

bubbles, but sometimes they are called very long discount bonds, intrinsically useless

money, zero-dividend �rms, or whatever. Such securities are usually analyzed in a set-

ting which is not completely explicit theoretically, and, as a result, does not provide

satisfactory answers to such basic questions as how, under a linear pricing rule, a se-

curity which has zero payo� at each date can still have positive value or how, under

a nonlinear pricing rule, arbitrage opportunities are avoided. Our approach provides a

theoretically explicit answer to these questions, and therefore allows a uni�ed treatment

within the general equilibrium paradigm of phenomena that might seem to be unrelated,

and to lie outside that paradigm.

9 Of course, the rules of the game change when the payo� space is ba rather than L1 or L2. For

example, one can no longer routinely ignore sets with probability measure zero.
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Appendix

We wish to characterize bubbles as the limit points of nets of fundamental securities.

The desired characterization raises the immediate question of whether|more precisely, in

what topology|the indicated limits exist. Rather than provide a full answer, consisting

of a formal exposition of integration with respect to a charge, we address these issues less

formally in the context of an example. The index set is assumed countable.

Let the security space initially be `11 = `1 (recall that the norm of x in `1 is kxk11 :=P1

i=1 jxij). The payo� stream on a unit-norm pure discount bond �i that matures at

date i is

�i(t) =

�
1 if t = i;

0 otherwise.
(19)

The price space is L1, where the norm is kpk11 := supi jpij.

The sequence f�ig does not converge in the norm topology, nor does it have any limit

points, since k�i � �jk
1
1 = 2 for all i 6= j. Given that our intention is to characterize

bubbles as limits of fundamentals, we wish to specify a topology in which, unlike in the

norm topology, �i converges. The example of the zero-dividend �rm indicates how to

proceed. In that example the value of the dividend streams is constant and positive over

di�erent dividend payout rates; this suggests that the dividend streams do not converge

to zero, and also that the appropriate test of convergence involves values. Thus it seems

natural to turn to the notions of weak and weak? convergence. A net of fundamental

securities fx� j � 2 Ag in `1 converges weakly to y 2 `1 if the net of real numbers

fp(x�)g converges to p(y) for any price system p 2 L1. The same notion of convergence

applied to ba instead of `1 yields weak? convergence in ba.10

The sequence of discount bonds f�ig does not have a weak limit point in `1. To

show this, suppose that y 2 `1 were such a limit point. By testing against the price

system �t 2 L1, we obtain yt = 0, since yt = �t(y) must be equal to limi �t(�i); hence

y = 0. But by testing against �M 2 L1, we obtain �M (y) = 1 since �M (�i) = 1 for all

i, a contradiction. On the other hand, the sequence is contained in the unit ball of `1,

10 More generally, let X be a topological linear space and Y a set of continuous linear functionals on

X . If convergence in X is tested by convergence of values for all elements of Y , then the convergence is

called weak if Y is the dual of X and weak? if X is the dual of Y .
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which is contained in the unit ball of ba (the set of charges with total variation norm

not exceeding unity), and Alaoglu's theorem states that the unit ball of ba is compact

in the weak? topology. This theorem therefore implies that the sequence f�ig has weak
?

convergent subnets, although it does not say that the sequence itself converges (false), or

that it has weak? converging subsequences (also false).11 We now construct a convergent

subnet; not surprisingly, the limit point is not in `1: it is a bubble.

An ultra�lter F is (in our case) a family of subsets of the natural numbers N such

that

(a) the empty set is not in F ;

(b) A, B 2 F implies A \ B 2 F ;

(c) A 2 F and A � B implies B 2 F ; and

(d) for any A � N , A 62 F , N nA 2 F .

For any ultra�lter F a charge �F can be de�ned by

�F (A) :=

�
1 if A 2 F ;

0 otherwise.
(20)

Note that the family of sets that contain any �xed number i 2 N is an ultra�lter and

that the bond �i|or, more exactly, the measure �i in ba to which �i corresponds as x

corresponds to � in (4)|is a 0{1 charge on this ultra�lter. Ultra�lters of this type are

called �xed ultra�lters (they �x on the number i).

Zorn's lemma implies the existence of other ultra�lters, called free ultra�lters, which

do not contain singletons. These free ultra�lters de�ne 0{1 charges in just the same way

as �xed ultra�lters. As a consequence of the de�ning properties of an ultra�lter, any

free ultra�lter excludes all the �nite sets; this being so, the value of the charge de�ned

in eq. (20) is necessarily zero on any �nite set when F is a free ultra�lter. Therefore 0{1

charges de�ned on free ultra�lters are pure charges rather than measures.

Our result is that if F is any free ultra�lter, there exists a subnet of f�ig (or f�ig)

that converges in the weak? topology to �F . In economic terms, this means that a subnet

11 A subnet of a sequence is not necessarily a subsequence, since the directed set indexing the subnet
may be richer than the natural numbers; the range of the subnet, of course, is contained in that of

the sequence and is thus countable. It is possible for a sequence to have convergent subnets but no
convergent subsequence.
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of the sequence of discount bonds f�ig can be found which converges to a pure bubble,

where \converges" means that the values of the discount bonds converge to the value of

the bubble under any admissible price system.

To construct the required subnet we need to specify a directed index set and to

associate a discount bond with each index. Then, we need to verify that the net so de�ned

is a subnet of the original sequence. We take the index set to be the free ultra�lter F

itself, and we direct it by inverse inclusion: B > A if B � A, so that higher sets have

fewer elements. Note that F plays two distinct roles: it determines the charge to which

the subnet of discount bonds will be shown to converge and it serves as the directed set

indexing the chosen subnet. Now, with each A 2 F associate the discount bond �k(A),

where k(A) is the smallest element in A. If B > A, then B � A so that k(B) � k(A),

which means that f�k(A) j A 2 Fg is a subnet of f�i j i 2 Ng.

In order to show that f
R
p d�k(A)g converges to

R
p d�F for any price system p, we

need to understand integration with respect to a 0{1 charge. For any sequence p 2 L1

there exists a real number rp equal to the supremum of the set of real numbers r satisfying:

fi j pi > rg 2 F . Then de�ne Z
p d�F := rp : (21)

To understand why this de�nition makes sense, note that for any � > 0, the set B of

indices i such that pi is within � of rp (that is, B := fi j rp � � � pi � rp + �g) belongs

to the family F , and its complement does not.12 The pure charge �F gives unit weight

to elements of F and zero weight to their complement; thus for any �, the set B is given

unit weight, while its complement is given no weight, motivating (21).

It remains to show that f
R
p d�k(A) j A 2 Fg converges to rp =

R
p d�F for any

p 2 L1. This is done by showing that for any � > 0, there exists B 2 F such that C > B

implies that
R
p d�k(C) is within � of rp. Fix � > 0 and set B := fi j rp� � � pi � rp+ �g,

which we know belongs to F . Since k(B) is an element of B, we must have

rp � � � pk(B)

�
=

Z
p d�k(B)

�
� rp + � :

12 It is immediate that fi j pi > rg is not in F for any r > rp, because rp is de�ned as the supremum
of all numbers with this property. Similarly, fi j pi < rp � �g cannot be in F , since it is the complement

of an element of F . It follows that the set left over must be in F .
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Now, elements of F greater than B are subsets of B, so we must have

rp � � � pk(C) � rp + �

for any C > B. That establishes the result.
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